Limites e continuidade
Aula 4 e exercícios - Limites e indeterminações
Aula com exemplos
Exercícios resolvidos
4.1) Calcule cada um dos seguintes limites:
(a) $\displaystyle\mathop {\lim }\limits_{x \to + \infty } \left( {{x^5} + 3x + 2} \right)$; | (b) $\displaystyle\mathop {\lim }\limits_{x \to + \infty } \left( {{x^5} - 3x + 2} \right)$; | |
(c) $\displaystyle\mathop {\lim }\limits_{x \to - \infty } \left( {4{x^5} - 3x - {x^6}} \right)$; | (d) $\displaystyle\mathop {\lim }\limits_{x \to - \infty } \left( {9x - 42{x^2} - 2{x^3}} \right)$ | |
(e) $\displaystyle\mathop {\lim }\limits_{x \to + \infty } \frac{{3 + 7x}}{{2 - x}}$ | (f) $\displaystyle\mathop {\lim }\limits_{x \to - \infty } \frac{{2{x^2} + 5x}}{{{x^2} + 3x + 2}}$ | |
(g) $\displaystyle\mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2}}}{{{x^3} + 9}}$ | (h) $\displaystyle\mathop {\lim }\limits_{x \to - \infty } \left( {\frac{1}{{{x^2}}} \times \frac{{{x^5}}}{{4 - 2x}}} \right)$ |
4.2)
Calcule cada um dos seguintes limites:
(a) $\displaystyle\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {x - 3} - \sqrt x } \right)$ | (b) $\displaystyle\mathop {\lim }\limits_{x \to + \infty } {\frac{{\sqrt {3x} - \sqrt {7 + 3x} }}{2}} $ | ||
(c) $\displaystyle\mathop {\lim }\limits_{x \to - \infty } {\frac{4}{{\sqrt {1 - 2x} - \sqrt {3 - 2x} }}} $ | (d) $\displaystyle\mathop {\lim }\limits_{x \to - \infty } {\frac{{\ln \sqrt e \times {x^2}}}{{\sqrt {{x^2}} - \sqrt {5 + 4{x^2}} }}} $ |
4.3)
Calcule cada um dos seguintes limites: