

Perguntas de Exames Nacionais dos últimos 16 anos com resolução e/ou vídeo.

Versão de 31 de dezembro de 2021.

Verifique se existe versão com data mais recente aqui e aceda a mais fichas aqui.

1. Um saco contém bolas azuis e bolas brancas, indistinguíveis ao tato. Cada bola tem uma única cor e só existem bolas azuis e bolas brancas no saco.

Retiram-se ao acaso, sucessivamente e sem reposição, duas bolas do saco.

Sejam A e B os acontecimentos:

A: "A primeira bola retirada é azul"

B: "A segunda bola retirada é branca"

Sabe-se que $P(A \cap B) = \frac{1}{3}P(A)$.

Justifique que inicialmente existia um número ímpar de bolas azuis no saco.

Sugestão: comece por designar por a o número de bolas azuis e por b o número de bolas brancas que existiam inicialmente no saco.

Resolução, pg. 7

Exame Nacional de 2020 - 1.ª fase

- **2.** Uma escola secundária tem apenas turmas de 10.°, 11.° e 12.° anos. Relativamente aos alunos desta escola, sabe-se que:
 - $\frac{3}{5}$ dos alunos do 10.° ano são rapazes;
 - $\frac{11}{21}$ dos alunos da escola são rapazes;
 - $\frac{1}{7}$ dos alunos da escola são rapazes e frequentam o 10.° ano.

Escolhe-se, ao acaso, um aluno dessa escola.

Determine a probabilidade de o aluno escolhido ser uma rapariga e não frequentar o 10.º

ano.

Apresente o resultado na forma de dízima, arredondado às centésimas.

Resolução, pg. 8

Exame Nacional de 2019 - 2.ª fase

3. Uma caixa contém bolas de várias cores, indistinguíveis ao tato, umas com um logotipo desenhado e outras não. Das bolas existentes na caixa, dez são amarelas. Dessas dez bolas, três têm o logotipo desenhado.

Retira-se, ao acaso, uma bola da caixa. Sabe-se que a probabilidade de ela não ser amarela ou de não ter um logotipo desenhado é igual a $\frac{15}{16}$.

Determine o número de bolas que a caixa contém.

Resolução, pg. 9

Exame Nacional de 2019 - 1.ª fase

4. Um saco contém n bolas indistinguíveis ao tato, numeradas de 1 a n (com n par e superior a 6).

Retira-se, ao acaso, uma bola do saco.

Sejam A e B os acontecimentos:

A: "o número da bola retirada é menor ou igual a 6"

B:"o número da bola retirada é par"

Escreva o significado de $P(\overline{A} \cup B)$ no contexto da situação descrita e determine uma expressão, em função de n, que dê esta probabilidade.

Apresente a expressão na forma de uma fração.

Resolução, pg. 10

Exame Nacional de 2017 - 2.ª fase

- 5. Seja Ω , conjunto finito, o espaço de resultados associado a uma certa experiência aleatória. Sejam A e B dois acontecimentos ($A \subseteq \Omega$ e $B \subseteq \Omega$). Sabe-se que:
 - P(A) = 0.4;
 - $P(\overline{B}) = 0.7;$
 - $P(A \cup B) = 0.5$

Qual é o valor de $P(\overline{A} \cup \overline{B})$?

(A) 0,6

(B) 0.7

(C) 0.8

(D) 0,9

Resolução, pg. 11

Exame Nacional de 2015 - 1.a fase

6.	Seja Ω o espaço de resultados associado a uma certa experiência aleatória. Sejam A e B dois acontecimentos ($A \subset \Omega$ e $B \subset \Omega$) incompatíveis. Sabe-se que $P\left(\overline{A} \cap \overline{B}\right) = 0,3$ e que $P(A) = 0,5$. Qual é o valor de $P(B)$?					
	(A) 0.2	(B) 0	(C) 0,5	(D) $0,4$		
	Resolução, pg. 12		Exame nacional de 2011	- Época Especial		
7.	7. Seja Ω o espaço de resultados associado a uma certa experiência aleatória, e sejam dois acontecimentos $(A \subset \Omega \ e \ B \subset \Omega)$. Sabe-se que:					
	• $P(A) = 30\%;$					
	$ P(A \cup B) = 70\%$;				
	• A e B são incomp	atíveis.				
	Qual é o valor de $P(B)$?					
	(A) 21%	(B) 40%	(C) 60%	(D) 61%		
	Resolução, pg. 13		Exame nacional of	de 2010 - 1.ª fase		
8.	Seja Ω o espaço de resultados associado a uma certa experiência aleatória, e sejam A e B dois acontecimentos ($A\subset\Omega$ e $B\subset\Omega$). Sabe-se que:					
	 P(A) = 0,4 P(B) = 0,3 					
	• $P(A \cap B) = 0.3$					
	Qual é o valor de $P(A \cup A)$	$\cup B)$?				

(C) 0.7

(D) 0,8

Exame nacional de 2010 - Época Especial

(A) 0,4

Resolução, pg. 14

(B) 0,6

9. Uma caixa contém bolas indistinguíveis ao tato e de duas cores diferentes: azul e rox Sabe-se que:						
	• o número de bolas azuis é 8;					
	• extraindo-se, ao acaso, uma bola da caixa, a probabilidade de ela ser azul é igual a $\frac{1}{2}$.					
	Quantas bolas roxas h	á na caixa? (B) 12	(C) 8	(D) 4		
	Resolução, pg. 15		Exame na	acional de 2010 - 2.ª fase		
10.	Seja Ω o espaço de resultados associado a uma certa experiência aleatória. Sejam A e B dois acontecimentos ($A \subset \Omega$ e $B \subset \Omega$). Mostre que $P(B) + P\left(\overline{A}\right) + P\left(\overline{A} \cup \overline{B}\right) = 2P\left(\overline{A}\right) + P(A \cup B)$. (P designa probabilidade e \overline{A} designa acontecimento contrário de A .)					
	Resolução, pg. 16		Exame nacional Es	special de 2009 - 1.ª fase		
11. Seja Ω o espaço de resultados associado a uma experiência aleatória. Sejam A e B dois acontecimentos possíveis ($A \subset \Omega$ e $B \subset \Omega$). Prove que: $P(\overline{A} \cup \overline{B}) = P(\overline{A}) - P(B) + P(A \cup B)$						
	$(P \text{ designa a probabilidade}, \overline{A} \text{ designa o acontecimento contrário de } A \text{ e } \overline{B} \text{ designa o acontecimento contrário de } B.)$					
	Resolução, pg. 17		Exame na	acional de 2008 - 2.ª fase		
12.	Seja Ω o espaço de redois acontecimentos (aleatória, e sejam A e B				
	 P (A ∪ B) = 80° P(B) = 60% P (A ∩ B) = 10° 					
	Qual é o valor de $P(A)$?					
	(A) 10%	(B) 20%	(C) 30%	(D) 40%		
	Pasalucão na 10		Evemane	ocional da 2008 - 1 ª face		

- 13. Em duas caixas, $A \in B$, introduziram-se bolas indistinguíveis ao tato:
 - na caixa A: algumas bolas verdes e algumas bolas azuis;
 - na caixa B: três bolas verdes e quatro azuis.

Retira-se, ao acaso, uma bola da caixa A e coloca-se na caixa B. De seguida, retira-se, também ao acaso, uma bola da caixa B.

Sabendo que a probabilidade de a bola retirada da caixa B ser azul é igual a $\frac{1}{2}$, mostre que a bola que foi retirada da caixa A e colocada na caixa B tinha cor verde.

Resolução, pg. 18

Exame nacional de 2008 - 1.ª fase

14. Lançaram-se dois dados, ambos com as faces numeradas de um a seis. Sabe-se que a soma dos números saídos foi quatro.

Qual é a probabilidade de ter saído o mesmo número, em ambos os dados?

(A) $\frac{1}{5}$

- **(B)** $\frac{1}{4}$
- (C) $\frac{1}{3}$

(D) $\frac{1}{2}$

Resolução, pg. 20

Exame Nacional de 2007 - 1.ª fase

15. A Sofia tem dois dados equilibrados.

Um dos dados é um cubo com as faces numeradas de 1 a 6.

O outro dado é um octaedro com as faces numeradas de 1 a 8.

A Sofia lança os dois dados e observa os números saídos (nas faces que ficam voltadas para cima).

No âmbito desta experiência, dê um exemplo de dois acontecimentos, A e B, nem impossíveis, nem certos, e tais que $A \neq B$ e $P(A \cap B) = P(A)$.

Resolução, pg. 23

Exame especial de 2006 - 1.ª fase

16. Seja Ω o espaço de resultados associado a uma certa experiência aleatória.

Sejam A e B dois acontecimentos ($A \subset \Omega$ e $B \subset \Omega$).

Sabe-se que P(A) = 0.3.

Apenas um dos acontecimentos seguintes pode ter probabilidade inferior a 0,3.

Qual deles?

(A) $A \cup B$

(B) $\overline{A} \cup B$

(C) $A \cap B$

(D) $\overline{A \cap B}$

Resolução, pg. 22

Exame Nacional de 2006 - 1.ª fase

17. Uma turma de 12.° ano é constituída por raparigas, umas de 16 anos e as restantes de 17 anos, e por rapazes, uns de 17 anos e os restantes de 18 anos.

Os alunos dessa turma estão numerados consecutivamente, a partir do número 1.

Escolhe-se, ao acaso, um aluno dessa turma e regista-se o número, a idade e o sexo desse aluno.

Em cada uma das opções seguintes estão indicados dois acontecimentos, X e Y associados a esta experiência aleatória.

Opção 1: X: "O aluno escolhido tem idade superior ou igual a 17 anos"

Y: "O aluno escolhido tem 16 ou 17 anos"

Opção 2: X: "O número do aluno escolhido é par"

Y: "O número do aluno escolhido é múltiplo de 4"

Opção 3: X: "O aluno escolhido tem 18 anos"

Y: "O aluno escolhido é rapariga"

Opção 4: X: "O aluno escolhido é rapaz"

Y: "O aluno escolhido tem 17 anos"

Em apenas uma das opções acima apresentadas os acontecimentos X e Y são tais que são verdadeiras as três afirmações seguintes:

$$P(X \cup Y) > P(X), P(X \cup Y) < 1 \text{ e } P(X \cap Y) > 0.$$

Qual é essa opção? Numa pequena composição, explique por que é que rejeita as outras três opções (para cada uma delas, indique, justificando, qual é a afirmação falsa).

Resolução, pg. 21

Exame Nacional de 2006 - 2.ª fase

Resoluções

Resolução da pergunta 1

Voltar ao enunciado da pergunta, pg. 1

Vídeo da resolução:

$$P(A \cap B) = \frac{1}{3}P(A) \Leftrightarrow \frac{a}{a+b} \times \frac{b}{a+b-1} = \frac{1}{3} \times \frac{a}{a+b}$$
$$\Leftrightarrow 3b = a+b-1 \Leftrightarrow a = 2b+1.$$

Como b é um número natural então 2b é um número par. Consequentemente, a=2b+1 é um número ímpar.

Voltar ao enunciado da pergunta, pg. 1

Vídeo da resolução (Reservado a inscritos. Inscreva-se neste link!):

Consideremos os acontecimentos:

R: "o aluno é rapaz";

F: "o aluno frequenta o 10.º ano".

De acordo com o enunciado temos:

$$P(R|F) = \frac{3}{5};$$

$$P(R) = \frac{11}{21};$$

$$P(R \cap F) = \frac{1}{7}.$$
Protected decrease relaxion

Pretendemos calcular $P(\overline{R} \cap \overline{F})$:

$$\begin{split} P\left(\overline{R} \cap \overline{F}\right) &= P\left(\overline{R \cup F}\right) \\ &= 1 - P\left(R \cup F\right) \\ &= 1 - \left(P(R) + P(F) - P\left(R \cap F\right)\right). \end{split}$$

Por outro lado,

$$P(R|F) = \frac{3}{5}$$

$$\Leftrightarrow \frac{P(R \cap F)}{P(F)} = \frac{3}{5}$$

$$\Leftrightarrow \frac{\frac{1}{7}}{P(F)} = \frac{3}{5}$$

$$\Leftrightarrow P(F) = \frac{\frac{1}{7}}{\frac{3}{5}}$$

$$\Leftrightarrow P(F) = \frac{5}{21}.$$

Assim,

$$1 - (P(R) + P(F) - P(R \cap F))$$
$$1 - \left(\frac{11}{21} + \frac{5}{21} - \frac{1}{7}\right)$$
$$= \frac{8}{21} \approx 0.38.$$

A probabilidade pedida é 0.38.

Voltar ao enunciado da pergunta, pg. 2

Vídeo da resolução (Reservado a inscritos. Inscreva-se neste link!):

Consideremos, relativamente à experiência de escolha aleatória de escolha de uma bola, os acontecimentos:

A: "a bola é amarela";

L: "a bola ter o logotipo desenhado".

Dos dados do enunciado podemos concluir que

$$P\left(\overline{A} \cup \overline{L}\right) = \frac{15}{16}$$
. Deste modo,

$$P(\overline{A} \cup \overline{L}) = \frac{15}{16}$$

$$\Leftrightarrow P(\overline{A \cap L}) = \frac{15}{16}$$

$$\Leftrightarrow 1 - P(A \cap L) = \frac{15}{16}$$

$$\Leftrightarrow P(A \cap L) = \frac{1}{16}.$$

Como as bolas são indistinguíveis ao tato e são selecionadas ao acaso, a Lei de Laplace garante que

$$P(A \cap L) = \frac{1}{16}$$

$$\Leftrightarrow \frac{\#(A \cap L)}{\#E} = \frac{1}{16}$$

$$\Leftrightarrow \frac{3}{\#E} = \frac{1}{16}$$

$$\Leftrightarrow \#E = 48.$$

Podemos concluir que a caixa contém 48 bolas.

Voltar ao enunciado da pergunta, pg. 2

 $P(\overline{A} \cup B)$ representa a probabilidade de o número da bola retirada ser superior a 6 ou ser par. Como há três números pares menores ou iguais a 6 (2, 4 e 6) então

$$P\left(\overline{A} \cup B\right) = \frac{n-6+3}{n} = \frac{n-3}{n}.$$

Voltar ao enunciado da pergunta, pg. 2

$$P\left(\overline{A} \cup \overline{B}\right) = P\left(\overline{A \cap B}\right) = 1 - P\left(A \cap B\right).$$
 Por outro lado,

$$\begin{split} P\left(A \cup B\right) &= 0.5 \Leftrightarrow P(A) + P(B) - P(A \cap B) = 0.5 \\ &\Leftrightarrow 0.4 + 0.3 - P(A \cap B) = 0.5 \\ &\Leftrightarrow P(A \cap B) = 0.2. \end{split}$$

Deste modo temos $1-P\left(A\cap B\right)=1-0,2=0,8$ e podemos concluir que a opção correta é a **(C)**.

Voltar ao enunciado da pergunta, pg. 3

Voltar ao enunciado da pergunta, pg. 3

Voltar ao enunciado da pergunta, pg. 3

Voltar ao enunciado da pergunta, pg. 4

Voltar ao enunciado da pergunta, pg. 4

Voltar ao enunciado da pergunta, pg. 4

Voltar ao enunciado da pergunta, pg. 5

Voltar ao enunciado da pergunta, pg. 4

Voltar ao enunciado da pergunta, pg. 5

Voltar ao enunciado da pergunta, pg. 6

Voltar ao enunciado da pergunta, pg. 5

Voltar ao enunciado da pergunta, pg. 5