

Proposta de Resolução do Exame de f Matemática f Aplicada às f Ciências f Sociais

Cód. 835 - 2ª Fase 2014

1.1 Comecemos por determinar a distribuição de representantes por aplicação do método de Hondt:

		PARTIDOS				
		Α	В	С	D	Е
	1	22010	17124	15144	12333	11451
S	2	11005,0	8562,0	7572,0	6166,5	5725,5
Divisores	3	7336,7	5708,0	5048,0	4111,0	3817,0
ivis	4	5502,5	4281,0	3786,0	3083,3	2862,8
	5	4402,0	3424,8	3028,8	2466,6	2290,2
	6	3668,3	2854,0	2524,0	2055,5	1908,5
Nº representantes		5	3	3	2	2

E de seguida pelo método de Saint-Laguë

		PARTIDOS				
		Α	В	С	D	E
	1	22010	17124	15144	12333	11451
S	3	7336,7	5708,0	5048,0	4111,0	3817,0
Divisores	5	4402,0	3424,8	3028,8	2466,6	2290,2
ivis	7	3144,3	2446,3	2163,4	1761,9	1635,9
	9	2445,6	1902,7	1682,7	1370,3	1272,3
	11	2000,9	1556,7	1376,7	1121,2	1041,0
Nº representantes		4	3	3	3	2

Como se pode constatar a aplicação dos dois métodos produz distribuições de representantes diferentes, nomeadamente no que respeita aos partidos A e D. O partido A perde um representante quando passamos do método de Hondt para o método de Saint-Laguë, enquanto que o partido D ganha um representante

1.2

- Aplicando o Método A

* Comece-se por seleccionar o Castanho e o Amarelo

1ª preferência	Castanho	Amarelo	Castanho
2ª preferência	Amarelo	Castanho	Amarelo
	150 votos	180 votos	100 votos

Contabilizando apenas a primeira linha,

Castanho – 250 votos

Amarelo – 180 votos

Vence o Castanho

* Como se procura uma cor que vença todas as comparações, o Amarelo já não pode ser e por isso selecciona-se agora o Castanho e o Vermelho.

Refazendo a tabela de preferências

1ª preferência	Castanho	Vermelho	Castanho
2ª preferência	Vermelho	Castanho	Vermelho
	150 votos	180 votos	100 votos

Contabilizando apenas a primeira linha,

Castanho – 250 votos

Vermelho – 180 votos

O castanho vence todas as comparações com as restantes cores e por isso será o vencedor pelo Método A

- Aplicando o Método B

	Pontuação		
Castanho	3	1	3
Amarelo	2	3	1
Vermelho	1	2	2
	150 votos	180 votos	100 votos

Castanho: $150 \times 3 + 180 \times 1 + 100 \times 3 = 930 \ pontos$

Amarelo: $150 \times 2 + 180 \times 3 + 100 \times 1 = 940 \ pontos$

Vermelho: $150\times1 + 180\times2 + 100\times2 = 710 \ pontos$

O vencedor será desta vez o Amarelo

Comparando os resultados obtidos pela aplicação dos dois métodos podemos constatar que o Manuel tem razão, uma vez que, aplicando o método A, o vencedor é o Castanho e aplicando o método B, o vencedor passa a ser o Amarelo.

2

Comece-se por aplicar o algoritmo proposto, escolhendo A como ponto de partida. Existem duas vivendas à mesma distância de A e mais próximas. São as vivendas B e D, a 100 metros de A cada uma.

Escolha-se a vivenda B.

Obtém-se a ligação AB – 100 metros

De seguida

BC – 100 metros

CE – 140 metros (CA não poderia ser porque repetir-se-ia a vivenda A)

ED - 110 metros

E voltando a A

DA - 100 metros

Num total de 550 metros (100 + 100 + 140 + 110 + 100)

Se em vez de começar por escolher a vivenda B, o Francisco começar por escolher a vivenda D passaremos a ter as seguintes ligações:

AD - 100 metros

DE - 110 metros

EB - 110 metros

BC - 100 metros

CA – 110 metros

Totalizando agora 530 metros (100 + 110 + 110 + 100 + 110)

Ou seja, no caso do Francisco escolher aleatoriamente a vivenda B, ele acabará por percorrer mais 20 metros do que se escolher começar pela vivenda D

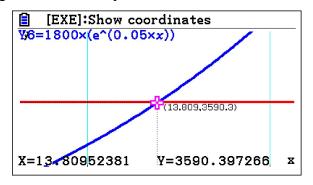
3.1. A população de Peso em 1 de junho de 2000 é dada por P(0) = 1800

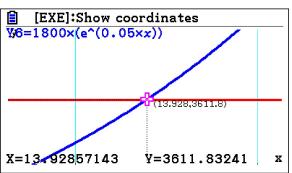
Coloca-se a expressão de P(t) no editor de funções, como Y1=Y1(X) e na tabela da função procura-se o valor de Y1 o mais próximo possível de $2 \times 1800 = 3600$, o que se verifica para X=14, como podemos constatar no excerto da tabela apresentada pela calculadora

X	Y1
()	()
13	3447,973
14	3624,755
15	3810,600
()	()

Pelo que é possível concluir que o número de habitantes de Peso duplique ao fim de 14 anos.

A questão também se pode resolver graficamente, traçando o gráfico das funções P(t) e Q(t)=3600 e procurando o valor inteiro de X imediatamente a seguir ao ponto de interseção. Os dois gráficos seguintes mostram que esse valor é X=14.





3.2.

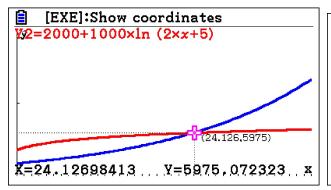
Procedendo de forma análoga à anterior, coloque-se no editor de funções os modelos de ambas as populações. Por exemplo em Y1, o modelo relativo a Peso e em Y2, o modelo relativo a Neiva. De seguida compara-se na tabela das duas funções, os valores de Y1 e de Y2 de forma a encontrar o valor mínimo de X para o qual Y1 > Y2:

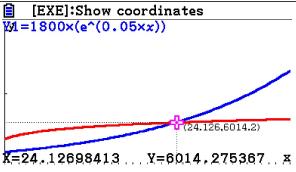
X	Y1	Y2
()	()	()
23	5684,75	5931,83
24	5976,21	5970,29
25	6282,62	6007,33
()	()	()

O que se verifica para X=24.

Isto é, ao fim de 24 anos a população de Peso será superior à população de Neiva.

Esta questão também pode ser resolvida graficamente. Traçando os gráficos das funções Y1 e Y2, vemos que o menor valor inteiro para o qual se tem Y1 > Y2 é X=24:





3.3. Para determinar o modelo pedido começa-se por introduzir os valores fornecidos nas listas da calculadora. Por exemplo, em L1 colocam-se os anos após o dia 1 de junho de 2000 e em L2 o número de habitantes de Runa de 2000 a 2006

L1	L2
0	632
1	894
2	1144
3	1407
4	1665
5	1920
5	2183

Realizando uma regressão linear chega-se ao modelo

$$R(t) \approx 258,07t + 632,21$$

O dia 1 de junho de 2012 corresponde a t = 12, assim para estimar o número de habitantes de Runa nessa data, teremos que calcular $R(12) \approx 3729,07$, o que corresponde a 3729 habitantes

4.1.Tabela de Frequências Absolutas Simples

Massa de açúcar	Frequência	Frequência	Frequência
na saqueta	Absoluta	Relativa	Relativa
(em gramas)	Simples	Simples (%)	Acumulada (%)
[5,8; 5,9[24	40	40

[5,9; 6,0[12	20	60
[6,0; 6,1[18	30	90
[6,1; 6,2[3	5	95
[6,2; 6,3[3	5	100
TOTAL	60		

4.2. Coloquemos em L1 o nº de saquetas de açúcar por caixa e em L2, o número de caixas correspondente

L1	L2
693	1
714	1
735	2
756	3
819	5
840	8

Recorrendo às funcionalidade da calculadora obtém-se uma média de saquetas de açúcar por caixa de 798, 38 saquetas acima da média esperada.

Assim, se retirarmos 38 saquetas a cada caixa, a média baixará 38 unidades e como tal obteremos a média esperada.

4.3. O intervalo de 95% de confiança para a proporção de saquetas com 8 ou mais gramas é, neste caso, dado por

$$\left| \hat{p} - z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}; \hat{p} + z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \right|$$

Onde

$$\hat{p} = 0.52$$

 $z = 1.960$

A amplitude deste intervalo é dada por $2z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = 2 \times 1,960\sqrt{\frac{0,52 \times 0,48}{n}}$

Queremos que

$$2 \times 1,960 \sqrt{\frac{0,52 \times 0,48}{n}} \approx 0,20 \Leftrightarrow 1,960 \sqrt{\frac{0,2496}{n}} \approx 0,10 \Leftrightarrow \sqrt{\frac{0,2496}{n}} \approx 0,0510$$

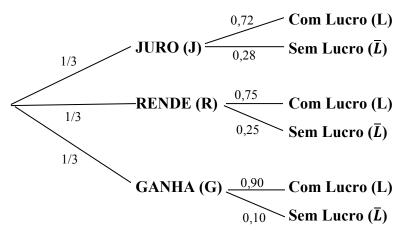
Ou seja,

$$\frac{0,2496}{n} \approx 0,0510^2 \Leftrightarrow n \approx \frac{0,2496}{0,0510^2} \approx 96$$

5.1. A probabilidade de uma aplicação financeira feita pela seguradora no banco GANHA não ter lucro é dada por 1-0.90 = 0.10

Assim, das 3500 aplicações financeiras , espera-se que 10% não tenham lucro, o que corresponde a 350 aplicações

5.2.



Pretende-se o valor de P(J|L) o que é dado por:

$$P(J|L) = \frac{\frac{1}{3} \times 0.72}{\frac{1}{3} \times 0.72 + \frac{1}{3} \times 0.75 + \frac{1}{3} \times 0.90} = \frac{0.24}{0.79} = \frac{24}{79}$$

5.3.

$$P(X > \mu) = 0.5$$

Logo

$$P(\mu < X < b) = 0.50 - 0.17 = 0.33$$

Ou seja

$$P(a < X < b) = 0.12 + 0.33 = 0.45$$

